Race of Source Effects in the Elaboration Likelihood Model

Paul H. White and Stephen G. Harkins

In a series of experiments, we investigated the effect of race of source on persuasive communications in the Elaboration Likelihood Model (R. E. Petty & J. T. Cacioppo, 1981, 1986). In Experiment 1, we found no evidence that White participants responded to a Black source as a simple negative cue. Experiment 2 suggested the possibility that exposure to a Black source led to low-involvement message processing. In Experiments 3 and 4, a distraction paradigm was used to test this possibility, and it was found that participants under low involvement were highly motivated to process a message presented by a Black source. In Experiment 5, we found that attitudes toward the source's ethnic group, rather than violations of expectancies, accounted for this processing effect. Taken together, the results of these experiments are consistent with S. L. Gaertner and J. F. Dovidio's (1986) theory of aversive racism, which suggests that Whites, because of a combination of egalitarian values and underlying negative racial attitudes, are very concerned about not appearing unfavorable toward Blacks, leading them to be highly motivated to process messages presented by a source from this group.

When presented a message, one cannot help but notice the message's source. For example, the source may be attractive or unattractive, a fast or slow speaker, or a famous or unknown spokesperson. Furthermore, these characteristics have been found to influence the persuasiveness of the message. For example, more persuasion has been found with an attractive source (Chaiken, 1979), a fast speaker (Miller, Maruyama, Beaber, & Valone, 1976), and a famous person (Petty, Cacioppo, & Schumann, 1983). Another obvious characteristic of the source is the color of her or his skin. In a society in which "the ideal of racial equality is strongly endorsed . . . even though it is rarely realized" (Bachman, Anastasio, & Gaertner, 1992, p. 1; see also Katz & Hass, 1988), the communicator's race may have systematic effects (positive or negative) on the persuasiveness of the communication. People from minority populations have achieved positions that require them, at times, to serve as sources of communications, some of which are crucial to society. For example, in recent times, the surgeon general, the chairman of the Joint Chiefs of Staff, and mayors of some of the major cities in the United States (e.g., New York, Seattle, Atlanta, and Washington, DC) have all been members of minority populations. It is important for researchers to investigate how the race of sources from minority populations may affect the persuasiveness of the messages they present.

Despite the prominent role that race plays in our society, surprisingly little attention has been paid to the effect of race of source on persuasion (for exceptions, see Aronson & Golden, 1962; Blass, Alperstein, & Block, 1974; Dembroski, Lasater, & Ramirez, 1978; Freedman, 1967; Noel & Allen, 1976; Ramirez, 1977; Ramirez & Lasater, 1977). The studies that have investigated race of source, when taken together, have shown mixed results regarding the effect of race on persuasion. For example, for White participants, sources from minority populations have been more persuasive (e.g., Freedman, 1967), less persuasive (e.g., Noel & Allen, 1976), and as persuasive (e.g., Blass et al., 1974) as White sources.

These mixed findings for race of source effects may not be too surprising in light of the history of persuasion research in general (see Petty & Cacioppo, 1981). Petty and Cacioppo (1986) noted, "The major problem facing [past] persuasion researchers was that after accumulating a vast quantity of data and an impressive number of theories . . . there was surprisingly little agreement concerning if, when, and how the traditional source, message, recipient, and channel variables . . . affected attitude change" (p. 2). However, in the past decade, some new models of persuasion have been developed that attempt to integrate these different variables (e.g., the Heuristic/Systematic Model, Chaiken, 1980; the MODE model, Fazio, 1990). One such model, the Elaboration Likelihood Model (ELM; Petty & Cacioppo, 1986) suggests that there are two routes to persuasion: central and peripheral. If a factor leads a person to be highly motivated (e.g., personal relevance of topic, Petty & Cacioppo, 1979; enjoyment in thinking [need for cognition], Cacioppo & Petty, 1982), then she or he is more likely to elaborate the message and the focus will be on the content of the message, given that the target has the ability to process it (central route). Systematic processing (Chaiken, 1980) of a message comprised of
cogent (strong) arguments results in predominantly favorable thoughts and leads to persuasion, whereas processing a message comprised of specious (weak) arguments results in predominantly unfavorable thoughts and leads to no persuasion or even an unfavorable reaction (e.g., Burnkrant & Unnava, 1989; Leippe, 1991; Leippe & Elkin, 1987; Mackie & Worth, 1989; Petty & Cacioppo, 1979, 1980, 1981).

When a person is not motivated or able to process the message, persuasion may still take place if salient cues are present (e.g., attractive source, Chaiken, 1979; speaking rate, Miller et al., 1976; number of arguments used, Petty & Cacioppo, 1984) in the persuasive context (peripheral route). In this case, the person's attitude is based on her or his reaction to the cue, not on elaboration of the arguments that constitute the message. If the cue leads to a favorable reaction, persuasion will occur; if the reaction is unfavorable, no persuasion will occur. For example, Chaiken (1980, Experiment 2) found that a likable source was more persuasive than a source who was less likable.

To manipulate motivation, researchers have often varied the personal relevance of the message (e.g., Maheswaran & Chaiken, 1991; Petty & Cacioppo, 1979, 1980, 1981). That is, if the issue or topic could have some direct effect on the person (high involvement), processing should take place (i.e., more persuasion with strong than with weak arguments). On the other hand, if the issue has little personal relevance, processing of the message content should be reduced. That is, under low-involvement conditions, participants should show relatively little differentiation between strong and weak argument messages in attitudes and thoughts, but they are susceptible to the effects of peripheral cues. Past research has supported this formulation (e.g., Chaiken, 1979, 1980; Maheswaran & Chaiken, 1991; Petty & Cacioppo, 1980, 1981, 1984; Petty, Cacioppo, & Goldman, 1981; Petty et al., 1983).

Experiment 1

According to Petty and Cacioppo (1986), source characteristics can affect persuasion in several ways, one of which is to serve as a peripheral cue. As our first step in investigating the effects of race of source on persuasion, we tested for a cue effect. Petty and Cacioppo (1986) suggested that one way to test for potential cue effects is to expose participants to the source with only her or his position on the topic known. Thus, in Experiment 1, participants were exposed to either a Black or White source with only the position to be taken in a message known (no message given). In addition, we included conditions in which participants were not informed of the position of the source to see whether participants would respond on the basis of the source's race alone. Finally, we included an attitude-only control group.

If race of the source acts as a cue, then we should find a difference between the sources when participants are given only the position to be taken by the source. The effects that the race of source cue can be expected to have are suggested by studies that have shown that Whites display negative attitudes, engage in negative behaviors, or both toward Blacks based solely on the color of their skin, not "the content of their character" (e.g., Allport, 1954; Jones & Sigall, 1971; Katz, 1970; Porier & Lott, 1967; Renninger & Williams, 1966). These negative reactions have continued after the civil rights movement of the 1960s (for a review, see Crosby, Bromley, & Saxe, 1980), although, in recent years, it has been argued that this negativity has mutated in its content and style of presentation (e.g., Devine, 1989; Frey & Gaertner, 1986; Katz & Hass, 1988; Katz, Wackenhut, & Glass, 1986; Sears, 1988). Nonetheless, each of these recent theories incorporates the notion that Whites hold negative views of Blacks, which could result in the Black source acting as a simple negative cue in the ELM.

Method

Participants and Design

Participants were 78 White male (n = 48) and female (n = 30) students who participated as a means of partially satisfying an introductory psychology course requirement. They were tested in groups ranging in size from 1 to 3 and were randomly assigned to one of five conditions in the 2 (Black vs. White source) X 2 (told vs. not told position) + 1 (attitude-only control) between-subjects design.

Procedure

A White male experimenter conducted the sessions. Upon entering the laboratory room, all participants were given a cover sheet that stated,

The cover sheet also included the statement that "This policy has been under consideration and will be implemented at Oklahoma State University in the next academic year but is not under consideration at Northeastern." (low involvement).

For participants in the Black or White source conditions, the sheet also stated: "We have asked some students to do some background research on this topic and we would like to get other students’ opinions on these reports. So, we would like you to read one student’s report and get your reactions to it." These participants were shown a "profile" sheet that presented demographic information about the student reporter. For all participants, the sheet had the following information: Age: 21 years old; Gender: Male; Year in school: 3rd year; Major: Undecided; and Home state: Massachusetts. The race was listed as either Black or White. All participants were asked to provide the same demographic information to describe themselves.

Next, participants were either told that the student's report would be in favor of the exam policy (told), or nothing was said about the student's position (not told). In addition, these participants were told that "we would like to get your opinion about the topic before you read the message," so no participants were exposed to the actual reports.

For participants in the attitude-only control condition, there was no

1 Over the past 15 years at Northeastern, social psychology students have conducted a study that measures undergraduates’ opinions toward senior exams on an 11-point scale, with 11 signifying agreement with the policy. The range of means in these studies has been between 3.5 and 4.9, so we feel confident that a pro-policy view is counter to most students’ position on this issue.
mention about a student source or about a report. These participants were not shown a profile sheet, but were asked to provide the same type of demographic information to describe themselves. Also, after completing the demographic information, participants were told only that “we would like to now get your opinion about the topic.”

All participants were given a few minutes to think about the topic, and then they filled out a questionnaire booklet that assessed their attitudes about comprehensive exams. Two measures of attitude were used. The first measure asked the participants to indicate the extent to which they agreed with the proposal of senior comprehensive exams on a scale ranging from 1 (do not agree at all) to 11 (agree completely). The second measure required the participants to rate the concept of senior exams from four 9-point (+4 to —4) semantic differential scales (good–bad, benefic–harmful, foolish–wise, and unfavorable–favorable).

All participants were given 2.5 min to list the thoughts they had about the topic. After listing their thoughts, they were asked to go back and rate each thought as either positive (e.g., “The tests are a good idea”), negative (e.g., “This would hinder students”), or neutral (e.g., “How long is the experiment?”) toward the topic. Participants’ self-ratings of thoughts have been used in past research (e.g., Burnkrant & Howard, 1984) and have been found to correlate highly with trained judges’ ratings (see Cacioppo, Harkins, & Petty, 1981).

For those exposed to a source, the last sheet of the questionnaire booklet consisted of questions concerning the report they anticipated reading (e.g., To what extent do you feel that the report will be convincing?) on 11-point scales. Finally, those participants exposed to a source were asked to recall the characteristics they could remember about the source as a manipulation check for race of source.

Results

Preliminary analyses revealed no sex effects, so this factor was dropped from the analyses. The data were analyzed with 2 (Black vs. White source) × 2 (told vs. not told position) analyses of variance (ANOVAs), unless otherwise noted.

Manipulation Checks

Personal involvement. The level of participants’ involvement was measured by using their responses on a 11-point scale to the question, “How likely is it that the policy will be implemented at your school?” The overall mean for the question was 3.46, and there were no reliable differences between the conditions, ps > .20.

Race of source. Participants were asked to recall the demographic characteristics of the student reporter. A 2 (Black vs. White actual source race) × 3 (Black vs. White vs. no source race recalled) chi-square was performed. The Black source was correctly recalled 93.3% of the time when the source was actually Black, and the White source was recalled 82.8% of the time when the source was actually White, χ²(2, n = 59) = 53.28, p < .0001. Participants did not misclassify the race of the reporter.

Dependent Variables

Attitude measure. To calculate the attitude score, first, the four 9-point semantic differential questions were correlated (mean r = .81). Because they were so highly correlated, these scores were summed and standardized. Next, the responses to the 11-point agreement question were standardized. These standardized scores from the 11-point question and the semantic differential totals were highly correlated (r = .87) and were averaged, yielding a mean attitude score.

First, we analyzed the attitude scores in a 2 (Black vs. White source) × 2 (told vs. not told position) ANOVA. This analysis revealed no differences among the conditions, ps > .20. Participants reacted to the Black and White sources similarly, whether the source’s position was given (Black source, M = .26; White source, M = .12) or not (Black source, M = .16; White source, M = .06). To test each of these means against the results from the attitude-only control condition, a Dunnett t test (Kirk, 1982) was used. The tests revealed that participants in the attitude-only control condition (M = —.06) did not differ in their reactions from the participants in the other four conditions, ps > .20. The same pattern of results was found for the attitude measures analyzed separately.

Thought listing. An index of thought positivity was computed by subtracting the number of negative thoughts listed from the number of positive thoughts (e.g., Burnkrant & Unnava, 1989; Chaiken, 1980). These results mirrored those found on the attitude measure. Neither the 2 × 2 nor the analysis including the attitude-only control condition (i.e., Dunnett t test) revealed a difference. Participants produced the same pattern of thoughts about the topic after exposure to the Black or White source, whether the source’s position was given (Black source, M = —.46; White source, M = .09) or not (Black source, M = —.58; White source, M = —1.00), and this pattern was not different from the attitude-only control group (M = —.21), ps > .20.

Ancillary measures. No significant differences were found for any of the ancillary questions.

Discussion

According to Petty and Cacioppo (1986), if a variable functions as a simple cue, the effects of that variable on attitudes should be observable in the absence of a persuasive message. Following the test suggested by Petty and Cacioppo (1986), under low involvement, we led participants to believe that they would be reading a counterattitudinal report written by a Black source or a White source. In addition, we tested the effect of exposure to the sources alone. The results for the attitude score and positivity index suggested that participants reacted the same to Black and White sources, whether the position was known or not. In addition, the attitudes and thoughts of these participants did not differ from those of participants in an attitude-only control condition, in which the message was not mentioned. Thus, in this paradigm, race of the source does not appear to act as a peripheral cue.

According to Petty and Cacioppo (1986), source characteristics may also motivate processing, even under low involvement (e.g., Heesacker, Petty, & Cacioppo, 1983; Mackie, Worth, & Asuncion, 1990). It has been suggested by modern theories of prejudice (e.g., Devine, 1989; Gaertner & Dovidio, 1986; Katz
et al., 1986) that Whites may be very concerned about how they appear in interracial interactions. This concern could lead White participants to process the message presented by the Black source so as not to appear unfair.

Experiment 2

In Experiment 2, we used the typical ELM paradigm in which topic relevance and argument strength are manipulated. As in Experiment 1, participants were told that they were taking part in a survey dealing with the implementation of senior comprehensive exams. They were led to believe these exams would be implemented at their school (high involvement) or would be implemented at a distant school (low involvement). The participants were told that they were to read reports, written by other students (either Black or White), that gave some background information about the policy. The pro-policy reports consisted of four strong arguments or four weak arguments from Petty and Cacioppo (1986).

According to the model, when participants feel involved in a topic, the quality of the message should be the important factor in determining attitudes, given that participants have the ability to process the message. Thus, under high involvement, it was expected that participants would be more persuaded by a message composed of strong arguments than by a message composed of weak arguments.

On the other hand, when participants feel uninvolved in a topic, the quality of the message should not be the important factor in determining attitudes; there should be no, or little, difference between the strong and weak messages. Because the previous research using this paradigm has either explicitly or implicitly used only White sources (e.g., Petty & Cacioppo, 1979, 1980, 1984; Petty, Cacioppo, & Goldman, 1981; Petty et al., 1983), we expected to replicate the basic finding of this paradigm with the White source. That is, there should be no argument quality effect under low involvement. For the Black source, we could find that participants may process the messages presented by the Black source because of a concern about how they may appear in the situation.

Method

Participants and Design

Participants were 160 White male (n = 86) and female (n = 74) students from introductory psychology classes who were given extra credit for participating. They were tested in groups ranging in size from 1 to 6 and were randomly assigned to one of the eight conditions in the 2 (Black vs. White source) × 2 (strong vs. weak argument quality) × 2 (high vs. low involvement) between-subjects design.

Procedure

A White male experimenter conducted the sessions. Upon entering the laboratory room, all participants were given the same cover sheet as the Black or White source participants from Experiment 1, except that for half of the participants the cover sheet contained the statement that, "This policy has been under consideration and implemented by other universities, and is currently under consideration by the Faculty Committee on Academic Affairs of Northeastern University. If the policy of Senior Comprehensive Exams is adopted by the committee, it will be implemented here at Northeastern University for the next academic year" (high involvement). The remaining participants read, "This policy has been under consideration and will be implemented at Oklahoma State University in the next academic year but is not under consideration at Northeastern" (low involvement). This manipulation of involvement has been used in previous research (e.g., Petty & Cacioppo, 1979; Petty, Cacioppo, & Goldman, 1981).

Next, participants were given the same race of source manipulation used in Experiment 1. Afterward, the participants were given a report to read. Each report was pro-policy and was approximately 1½ pages long. The report contained either four strong arguments (e.g., starting salary of graduates increased by over $4,000) or four weak arguments (e.g., exams increased student's anxiety level). The arguments came from published examples of strong and weak arguments (Petty & Cacioppo, 1986), adapted into report form and pretested. In this pretest, the strong argument message led to more favorable thoughts and was rated of higher quality than the weak argument message.

After reading the report, participants filled out a questionnaire booklet that assessed their attitudes about comprehensive exams and the quality of the report. The two measures of attitude from Experiment 1 were used. In addition, to measure message elaboration, participants were given 2.5 min to list the thoughts they had about the topic while reading the report. As in Experiment 1, after listing their thoughts, they were asked to go back and rate each thought as positive, negative, or neutral toward the topic.

After listing and rating their thoughts, participants were given 3 min to list as many of the key points made in the report as they could remember. The last sheet of the questionnaire booklet consisted of manipulation check questions for involvement (i.e., how likely is it that the policy will be implemented at your school?) and for argument quality (i.e., What was the quality of the arguments used?) that used 11-point scales. Also, ancillary questions about the source (e.g., How intelligent did you feel the student who made the report was?) and about the report (e.g., To what extent do you feel that the report was convincing?) were included. Next, participants were asked to recall the demographic characteristics used to describe the source.

Finally, participants were asked if they would help out another researcher who was "developing a scale for measuring ethnocentrism using college-aged people" by completing a short questionnaire, the purpose of which was "to establish baselines for the views that various ethnic groups have of each other, which can be used to compare future subjects' scores to their 'peer' group." Participants were asked to rate a series of different races on a series of characteristics (i.e., good-bad, valuable-unvaluable, clean-dirty, favorable-unfavorable, and mature-immature) on semantic differential scales (−4 to +4). This last questionnaire was used as a measure of prejudice.3

Results

In preliminary analyses, it was found that participants' gender and level of prejudice did not affect the results for either attitude or thought measures, so these factors were dropped

3 The responses to the semantic differential scales were summed for each ethnic group (−20 to +20). Prejudice level on this scale was computed in two ways. First, participants were divided into high and low groups based on a median split of their totals in response to Blacks only. Second, a difference score was computed between participants' responses to Whites and Blacks, and a median split was conducted on these scores.
from the analyses. The data were analyzed with 2 (high vs. low involvement) x 2 (Black vs. White source) x 2 (strong vs. weak argument quality) ANOVAs, unless otherwise noted.

Manipulation Checks

Personal involvement. The involvement manipulation was checked by using the participants' responses on a 11-point scale to the question, "How likely is it that the policy will be implemented at your school?" Analysis revealed a main effect for involvement, $F(1, 152) = 32.86, p < .0001$. Participants in the high-involvement condition ($M = 5.88$) indicated that the policy was more likely to be implemented than did participants in the low-involvement condition ($M = 3.75$).

Race of source. Participants were asked to recall the demographic characteristics of the student reporter. A 2 (Black vs. White actual source race) x 3 (Black vs. White vs. no recalled source race) chi-square was performed. The Black source was correctly recalled 95% of the time when the source was actually Black, and the White source was recalled 85% of the time when the source was actually White, $\chi^2(2, n = 160) = 148.00, p < .0001$. Participants did not misclassify the race of the reporter.

Argument quality. The argument quality manipulation was checked by using the participants' responses on an 11-point scale to the question, "What was the quality of the arguments used?" Analysis revealed a main effect for argument quality, $F(1, 152) = 28.07, p < .0001$. Participants rated the strong arguments ($M = 6.55$) as of better quality than the weak arguments ($M = 4.51$).

Dependent Variables

Attitude scores. The attitude score was computed by the same method as in Experiment 1 (mean $r = .80$ for semantic differentials, $r = .83$ for the two standardized attitude measures).

A main effect for race was found, $F(1, 152) = 5.21, p = .02$. Participants who read a message attributed to the White source were more persuaded ($M = .16$) than were those who read the same message attributed to the Black source ($M = -.16$).

In addition, a main effect for argument quality was found, $F(1, 152) = 11.07, p = .001$. Participants exposed to the strong arguments were more persuaded ($M = .24$) than were participants exposed to the weak arguments ($M = -.24$). However, this main effect must be interpreted in terms of a significant Argument Quality x Involvement interaction, $F(1, 152) = 4.01, p = .05$. Post-hoc tests (Tukey HSD; Kirk, 1982) revealed that high-involvement participants were more persuaded by the strong arguments ($M = .49$) than by the weak arguments ($M = -.27$), $p < .05$; whereas under low involvement, there were no differences between arguments (see top of Table 1 for all of the means).

Thought listing. A positivity index was computed by the same method as in Experiment 1. On this measure, a main effect for argument quality was found, $F(1, 152) = 12.73, p = .0005$. Participants generated a higher positivity index after exposure to the strong arguments ($M = 1.28$) than after exposure to the weak arguments ($M = -.78$). In addition, a significant Argument Quality x Involvement x Race interaction was found, $F(1, 152) = 4.36, p = .04$ (see bottom of Table 1 for all of the means). To interpret this interaction, we looked at the results as a function of race (i.e., Argument Quality x Involvement for the White source and Black source) using the within-groups means square for the overall analysis as the error term. For the White source, as predicted by the ELM, only an Involvement x Argument Quality interaction was found, $F(1, 152) = 3.52, p = .06$. Participants in the high-involvement condition who read the strong arguments generated a higher positivity index ($M = 2.5$) than did participants who read the weak arguments ($M = -.30$), $p < .05$, but there were no differences between arguments under low involvement (Tukey HSD; Kirk, 1982). For the Black source, only a main effect for argument quality was found, $F(1, 152) = 12.09, p < .01$. Participants generated a higher positivity index for the strong arguments ($M = 1.1$) than for the weak arguments ($M = 1.73$).

Argument recall. No differences were found between conditions for the number of arguments recalled by the participants, $ps > .20$. The overall average number of arguments recalled was 2.73 out of a possible 4.

Ancillary measures. An index of the message's efficacy was computed by averaging the participants' responses to "To what extent do you feel the report made its point effectively?" and "To what extent do you feel that the report was convincing?" ($r = .78$). In addition, an index of the source's knowledge was computed by averaging the participants' responses to "How intelligent did you feel the student who made the report was?", "Did the student seem knowledgeable about the topic?" and "Did the student seem like a credible spokesperson on the topic?" ($r = .76$).

Analysis of these two indices revealed only a main effect for argument quality. Participants exposed to the strong arguments indicated that the report was more effective ($M = 7.38$), $F(1, 152) = 28.14, p < .0001$, and that the source was more knowledgeable ($M = 7.31$), $F(1, 152) = 25.78, p < .0001$, than those exposed to the weak arguments ($M = 5.39$ and $M = 5.79$, respectively). Analysis of the other ancillary measures did not reveal any significant differences.

Discussion

The results for the attitude measure revealed two main findings. First, participants were more persuaded overall by the White source than by the Black source. Second, the Argument Quality x Involvement interaction that has been found in past research in this paradigm (e.g., Maheswaran & Chaiken, 1991; Petty & Cacioppo, 1979, 1980, 1981, 1984; Petty, Cacioppo, & Goldman, 1981) was replicated. That is, argument quality affected the high-involvement participants only. However, from the analysis of the participants’ thoughts, which has been an effective tool in uncovering message processing (see Cacioppo et al., 1981; Petty & Cacioppo, 1986), another pattern emerges. For participants exposed to the White source, we found the
same Argument Quality × Involvement interaction pattern that occurred with the attitude scores, as predicted by the model. On the other hand, for participants exposed to the Black source, only a main effect for argument quality was found. This finding suggests that argument quality did affect those participants under low involvement.

Even though the three-way interaction for attitudes was not significant, when this interaction is decomposed in the same way as was the significant three-way interaction for thoughts, tentative support for processing under low involvement is found. As can be seen in the top panel of Figure 1 under high involvement, participants who read strong arguments attributed to a White source were more persuaded than those who read the weak arguments. However, under low involvement, participants were equally persuaded by the strong and weak arguments, Argument Quality × Involvement interaction \(F(1, 152) = 10.40, p = .006 \).

On the other hand, under both levels of involvement, participants who read a message attributed to a Black source were more persuaded by the strong arguments than those who read the weak arguments (see bottom of Figure 1, main effect for argument quality, \(F(1, 152) = 10.40, p < .01 \)). This analysis revealed no other reliable effects.

These results suggest that participants may have reacted very differently to the Black and White sources. With the White source, as suggested by the ELM, the involvement manipulation dictated whether argument quality affected persuasion. However, with the Black source, participants appear to be motivated to process the messages under low involvement. This notion suggests that race of source may be a motivator variable in the ELM.

Processing under low involvement has been found in other research (e.g., Burnkrant & Howard, 1984; Maheswaran & Chaiken, 1991; Petty, Cacioppo, & Heesacker, 1981; Swasy & Munch, 1985). For example, Burnkrant and Howard (1984) found that when rhetorical questions were placed at the beginning of an argument, the questions increased processing of the argument under low involvement. The participants were motivated to try to answer the question with the information provided in the message.

Experiment 3

The results of Experiment 2 suggest that exposure to the Black source also may lead to message processing under low involvement. If this finding is the result of message processing, previous research (e.g., Petty, Wells, & Brock, 1976) suggests that distraction should eliminate this effect by disrupting the participants' ability to elaborate the arguments presented in the message. For example, Petty et al. (1976) asked participants to engage in two tasks at once: The participants were asked to listen to a strong or weak argument message in favor of tuition increases (Experiment 1) or reductions (Experiment 2) at their school (high involvement) and, simultaneously, to report the quadrant in which an "X" flashed on a projection screen. The flashes were presented either every 5 s (high distraction) or every 15 s (low distraction). Analyses revealed Argument Quality × Distraction interactions for measures of attitudes and thoughts. Under low distraction, a replication of the typical finding was obtained: an argument quality effect, with exposure to the strong argument message resulting in more favorable attitudes and more positive thoughts than exposure to the weak argument message. On the other hand, under high distraction, no difference was found as a function of argument quality for attitude or thoughts (see also Bless, Bohner, Schwarz, & Strack, 1990; Lammers & Becker, 1980).

This distraction paradigm can be used to investigate the role that processing plays in the low involvement–Black source finding. If this finding is the result of processing, a distractor should eliminate message elaboration, thus disrupting the processing and eliminating the argument quality effect. As our distractor, we used an auditory analog of Petty et al.'s (1976) visual stimuli: counting clicks on an audiotape. This distractor was tested under high involvement with no mention of race and it was found that under high distraction, the argument quality effect was eliminated, whereas under low distraction, the argu-

3 This pattern of results (i.e., an argument quality effect for the Black source in attitude and positivity index) was also found in another study that included only the low-involvement instructions.
ment quality effect was replicated. In Experiment 3, this paradigm was used to test the effect of distraction on the low involvement-Black source effect found in Experiment 2.

If exposure to the Black source under low involvement does motivate message processing, a high level of distraction should disrupt the elaboration of the message, leading to equivalent attitudes and thought measures for the messages. Under low distraction, the argument quality effect should be replicated: Participants should be more persuaded by the strong argument message than by the weak argument message when presented by a Black source.

In Experiment 2, no argument quality effect was found for participants reading messages attributed to the Black source under low involvement. Thus, any effect that distraction has on the messages presented by the White source should not reflect processing.

Method

Participants and Design

Participants were 120 White male (n = 61) and female (n = 59) students who participated as a means of partially satisfying an introductory psychology course requirement. They were tested in groups ranging in size from 1 to 3 and were randomly assigned to one of the eight conditions in the (2) high vs. low distraction) × 2 (Black vs. White source) × 2 (strong vs. weak argument quality) between-subjects design.

Procedure

The White male experimenter from Experiment 2 conducted the sessions. Upon entering the laboratory, all participants were given a cover sheet that stated,

In the “real world,” people are often called upon to do more than one thing at a time. For example, while driving a car, one must be able to control the car, find where he/she is going, listen to the radio and watch out for hazards. We are interested in investigating similar situations. One such situation is reading in the face of background noise, similar to most academic study settings. We would like for you to read some information while listening to a tape recording. On the tape, a “click” will be played. The clicks will come randomly and we would like for you to keep a mental record of how many clicks you hear.

To encourage participants to be accurate, they read that we would be telling them how many clicks there were at the conclusion of the study.

As the second task, participants were informed that “Because we are interested in ‘real world’ implications, we have chosen a topic that is currently under discussion on many college campuses: . . . comprehensive exams prior to graduation.” The participants were given the same information about senior comprehensive exams as in Experiment 2, except all participants read that, “This policy has been under consideration and will be implemented at Oklahoma State University in the next academic year but is not under consideration at Northeastern” (low involvement only).

The race manipulation from Experiment 1 was used. After giving their own demographic information, participants were told that reading the report was their primary task but they were to be as accurate as

6 To test the click paradigm as a distractor, 52 introductory psychology students (35 men and 17 women) participated in a pilot study. To make sure that processing was disrupted, the distraction task was tested in conditions under which it is known that processing should occur (high involvement). No mention of the source's race was made to isolate the distractor's effect on processing. Participants were told that the exam policy was under consideration at Northeastern and were asked to read either the strong or weak message from Experiment 2 while simultaneously counting clicks randomly placed on a cassette tape. The clicks sounded on an average of every 3 s (high distraction) or every 15 s (low distraction). The attitude score was computed by the same method as in Experiment 1 (mean r = .84 for semantic differentials, r = .89 for the two standardized attitude measures). The analysis revealed the predicted Distraction × Argument Quality interaction, F(1, 48) = 9.15, p = .004. Post-hoc tests (Tukey HSD; Kirk, 1982) showed that under low distraction, participants were more persuaded by the strong arguments (M = .68) than by the weak arguments (M = -.27), p < .05. However, under high distraction, there was no difference between the messages, and the means were in the opposite direction to the usual findings (weak arguments, M = .06 and strong arguments, M = -.48). This pattern was replicated on the positivity index, F(1, 48) = 8.05, p = .007.
possible in counting the clicks. Next, participants were informed that they would be given 3 min 15 s to read the report and count the clicks. Before the task began, a sample click was played for the participants, so they would know what to listen for and to count as a click. Participants listened to one of two tapes through headphones. The cassette tape consisted of either 65 (high distraction) or 13 (low distraction) randomly placed clicks over a span of 195 s (3 min 15 s). Click placement averaged one every 3 s for high distraction and one every 15 s for low distraction.

Next, the participants were given a report to read, which was either the strong or weak message from Experiment 2. After the time period expired, participants filled out a questionnaire booklet that assessed their attitudes and thoughts about comprehensive exams, asked for argument recall, and used the same manipulation checks for involvement and argument quality from Experiment 2. A manipulation check for distraction (i.e., To what extent were you distracted while reading the report?) was included, as were ancillary questions about the source and the report. After they completed the booklet, participants were asked to recall the characteristics they could remember about the source as a manipulation check for race of source.

Results

Preliminary analyses revealed no sex effects, so this factor was eliminated from the analyses. The data were analyzed with 2 (high vs. low distraction) \(\times \) 2 (Black vs. White source) \(\times \) 2 (strong vs. weak argument quality) ANOVAs, unless otherwise noted.

Manipulation Checks

Personal involvement. The overall mean for involvement was 3.72 (\(M = 3.75 \) for low involvement in Experiment 2), and there were no reliable differences found between conditions, ps > .20.

Distraction. The question, “To what extent were you distracted while reading the report?” was used as a manipulation check for distraction. Participants in the high-distraction condition indicated that the clicks were more distracting (\(M = 7.87 \)) than did participants in the low-distraction condition (\(M = 6.00 \)), \(F(1, 112) = 17.63, p < .0001 \).

Race of source. Participants were asked to recall characteristics of the student reporter. A 2 (Black vs. White actual source race) \(\times \) 3 (Black vs. White vs. no source race recalled) chi-square was performed. The Black source was correctly recalled 100% of the time when the source was actually Black, and the White source was recalled 77% of the time when the source was actually White, \(\chi^2(2, n = 120) = 120.00, p < .0001 \). Participants did not misclassify the race of the reporter.

Argument quality. The same question from Experiment 2 was used as the manipulation check for argument quality. A main effect was found for argument quality, \(F(1, 110) = 12.72, p < .0005 \). Participants rated the strong arguments as of better quality (\(M = 6.75 \)) than the weak arguments (\(M = 5.34 \)). Also, a main effect was found for race, \(F(1, 112) = 7.84, p = .006 \). Participants who read a message attributed to the Black source (\(M = 6.6 \)) rated the report to be of better quality than did those who read a message attributed to the White source (\(M = 5.5 \)).

Dependent Variables

Attitude measures. The attitude score was computed by the same method as in Experiment 1 (mean \(r = .73 \) for semantic differentials, \(r = .95 \) for the two standardized attitude measures).

A main effect for argument quality was obtained, \(F(1, 112) = 10.13, p = .002 \). Participants exposed to the strong arguments were more persuaded (\(M = .25 \)) than were participants exposed to the weak arguments (\(M = -.25 \)). However, this main effect must be interpreted in terms of a significant Race \(\times \) Argument Quality interaction, \(F(1, 112) = 10.28, p = .002 \). Post-hoc tests (Tukey HSD; Kirk, 1982) revealed that participants who read a message attributed to the Black source were more persuaded by strong arguments (\(M = .48 \)) than were those who were exposed to weak arguments (\(M = -.52 \)), \(p < .05 \) (see top panel of Figure 2). However, participants who read a message attributed to the White source were equally persuaded by the arguments (strong arguments, \(M = .02 \); weak arguments, \(M = .02 \)).

Also, a significant Race \(\times \) Distraction interaction was found, \(F(1, 112) = 15.38, p = .0002 \). As can be seen in the bottom panel of Figure 2, participants who read a message attributed...
to the Black source were more persuaded under high distraction ($M = .22$) than were their low-distraction counterparts ($M = -.26$), $p < .05$ (Tukey HSD; Kirk, 1982). On the other hand, participants who read a message attributed to the White source were less persuaded under high distraction ($M = -.35$) than were their low-distraction counterparts ($M = -.39$), $p < .05$ (Tukey HSD; Kirk, 1982).7

In addition to the overall $2 \times 2 \times 2$ ANOVA, to see whether the results under low distraction replicated the low-involvement findings from Experiment 2, a priori orthogonal contrasts (Kirk, 1982) were used to test for argument quality effects. The first contrast compared the reactions of Black source participants exposed to strong arguments with the reactions of Black source participants exposed to weak arguments. Also replicating Experiment 2, Black source participants exposed to strong arguments ($M = .23$) were more persuaded than those exposed to weak arguments ($M = -.75$), $F(1, 112) = 15.38, p < .0002$. The second contrast compared the reactions of White source participants exposed to strong arguments with the reactions of White source participants exposed to weak arguments. As found in Experiment 2, White source participants reacted similarly to strong ($M = .31$) and to weak ($M = .47$) arguments, $p > .2$.

Thought listing. A positivity index was computed by the same method as in Experiment 1. On this measure, a main effect for argument quality was obtained, $F(1, 112) = 19.94, p < .0001$. Participants exposed to strong arguments generated a higher positivity index ($M = 1.22$) than did participants exposed to weak arguments ($M = -.58$). However, as with the attitude measure, this main effect must be interpreted in terms of a significant Race X Argument Quality interaction, $F(1, 112) = 3.94, p = .05$. Post-hoc tests (Tukey HSD; Kirk, 1982) revealed that participants who read a message consisting of strong arguments attributed to the Black source generated a higher positivity index ($M = 1.87$) than did participants exposed to weak arguments ($M = -.73$), $p < .05$. However, participants who read a message consisting of strong arguments attributed to the White source did not differ in the positivity of their thoughts ($M = .57$) from those exposed to weak arguments ($M = -.43$).

In the overall $2 \times 2 \times 2$ ANOVA, two a priori contrasts were used to test for a replication of the low-involvement argument quality findings from Experiment 2. The positivity of the thoughts generated by Black source participants exposed to strong arguments was more positive ($M = 1.00$) than it was for those exposed to weak arguments ($M = -.80$), $F(1, 112) = 4.99, p = .03$. On the other hand, White source participants exposed to strong arguments ($M = .53$) did not differ from the positivity of the thoughts generated by participants exposed to weak arguments ($M = .07$), $p > .20$. As with the attitude measure, this analysis revealed that the pattern of results under low involvement from Experiment 2 was replicated under low distraction.

Argument recall. The overall average number of arguments recalled was 2.68 out of a possible 4. The analysis revealed a Race X Distraction interaction, $F(1, 112) = 5.80, p < .01$. Post-hoc tests (Tukey HSD; Kirk, 1982) revealed that participants who read a message attributed to the White source recalled more arguments in the low-distraction condition ($M = 2.97$) than in the high-distraction condition ($M = 2.47$), $p < .05$. However, for participants who read a message attributed to the Black source, level of distraction had no effect (low distraction, $M = 2.57$; high distraction, $M = 2.77$).

Ancillary measures. The message efficacy ($r = .78$) and knowledge (mean $r = .74$) indices were computed as in Experiment 2. Race affected the participants' perceptions on these two indices similarly. Participants who read reports attributed to the Black source indicated that the report was more effective ($M = 7.18$), $F(1, 112) = 8.11, p = .005$, and that the Black source was more knowledgeable ($M = 7.06$), $F(1, 112) = 5.55, p = .02$, than did those who read reports attributed to the White source ($M = 6.04$ and $M = 6.31$, respectively).

Argument quality also affected the participants' perceptions on the efficacy and knowledge indices similarly. Participants exposed to strong arguments indicated that the report was more effective ($M = 7.31$), $F(1, 112) = 12.04, p = .0007$, and that the source was more knowledgeable ($M = 7.04$), $F(1, 112) = 5.07, p = .03$, than did those exposed to weak arguments ($M = 5.92$ and $M = 6.33$, respectively).

Race affected the participants' perception of how effortful the task was, $F(1, 112) = 6.67, p = .01$. Participants who read reports attributed to the Black source ($M = 6.63$) indicated that the task was more effortful than did those who read the same reports attributed to the White source ($M = 5.53$).

For participants' perceptions of how involved they were in reading the report, a three-way interaction was obtained, $F(1, 112) = 8.16, p = .005$. Post-hoc tests (Tukey HSD; Kirk, 1982) indicated that under high distraction, participants who read a message attributed to a Black source were more involved in reading the strong arguments ($M = 7.60$) than in reading the weak arguments ($M = 4.93$), $p < .05$. No other strong–weak argument comparisons yielded reliable differences. Along with this three-way interaction, a Distraction X Argument Quality interaction, $F(1, 112) = 4.49, p = .04$; a Race X Argument Quality interaction, $F(1, 112) = 6.19, p = .01$; and a main effect for distraction, $F(1, 112) = 12.91, p = .0005$, were also obtained, but these must be interpreted in terms of the significant three-way interaction. Analysis of the other ancillary measures did not reveal any significant differences.

Discussion

This experiment was conducted to test whether the argument quality effect found under low involvement for participants exposed to a Black source was the result of message processing. Under low distraction, the previous low-involvement findings (Experiment 2) were replicated: Participants who read reports attributed to a Black source were more persuaded by the strong argument message than by the weak argument message.

7 We speculate that participants' exposure to the high level of distraction may have been irritating, which may have led them to want to respond negatively to the message. Participants who read a message attributed to the White source may have seen no reason not to vent this irritation. On the other hand, participants who read a message attributed to the Black source may have felt it inappropriate to respond negatively. We will return to this possibility in the General Discussion.
whereas those who read reports attributed to the White source were not affected by the quality of the arguments. In addition, the argument quality effect was reflected in the thought-listing measure. That is, Black source participants generated a higher positivity index after reading the strong argument message than after reading the weak argument message, but there was no such effect for the White source participants.

If this low-involvement effect was the result of processing, we anticipated that it would be disrupted by high distraction. However, under high distraction, participants who read messages attributed to the Black source, produced the same pattern of results as that found under low distraction for both attitude scores and thoughts. This pattern of attitude scores and thoughts suggests that processing may have taken place even under high distraction. We chose this level of distraction on the basis of a pretest in which we found that it disrupted message processing under high involvement (see Footnote 6). The results of this pretest led us to believe that this high-distraction level should have been strong enough to disrupt any message processing under low involvement. However, the highly reliable effects for both the attitudes and the thoughts suggest that this was not the case.

Experiment 4

The argument quality effects for the attitudes and positivity index suggest that even though high distraction disrupted the processing that follows from high involvement, it may not have been strong enough to disrupt the processing that appears to follow from exposure to the Black source under low involvement. If this interpretation for Experiment 3 is correct, then an increase in the magnitude of the distractor should eliminate the argument quality effect. However, if the argument quality effect is not the result of processing, then the increase in the distractor's magnitude should have no effect. In the next experiment, the limit of the argument quality effect stemming from exposure to the Black source was tested by increasing the number of clicks used as high distraction in Experiment 3 (65 clicks) to 91 clicks (higher distraction). The increase represents half of the difference between our high distractor (65 clicks) and low distractor (13 clicks).

Method

Participants and Design

Participants were 60 White male (n = 37) and female (n = 23) students who participated as a means of partially satisfying an introductory psychology course requirement. They were tested in groups ranging in size from 1 to 3 and were randomly assigned to one of the four conditions in a 2 (Black vs. White source) x 2 (strong vs. weak argument quality) between-subjects design.

Procedure

The same experimenter from Experiment 3 conducted the sessions. The procedures from Experiment 3 were used, except that all participants were exposed to a tape on which there were 91 clicks. The clicks were recorded in the same manner as was the case on the 65- and 13-click tapes, and averaged 1 click about every 2 s.
quality, $F(1, 56) = 6.57, p = .01$. Participants exposed to weak arguments recalled more arguments ($M = 2.53$) than did those exposed to strong arguments ($M = 1.87$).

Ancillary measures. The message efficacy ($r = .55$) and knowledge (mean $r = .73$) indices were computed, as in Experiment 2. Argument quality affected the participants’ perceptions on the efficacy and knowledge indices similarly. Participants exposed to strong arguments indicated that the report was more effective ($M = 6.87$), $F(1, 56) = 7.55, p = .008$, and that the source was more knowledgeable ($M = 7.39$), $F(1, 56) = 10.48$, $p = .002$, than did those exposed to weak arguments ($M = 5.47$ and $M = 5.98$, respectively). Analysis of the other ancillary measures did not reveal any significant differences.

Discussion

The results from Experiment 2 suggested that participants who read a report attributed to the Black source under low involvement may have processed the message. If this is so, it should be possible to disrupt the processing with a secondary distraction task. In Experiment 3, we found that a distractor that had disrupted high-involvement processing did not eliminate the argument quality effect produced by exposure to the Black source. In Experiment 4, when the distractor was intensified, the attitude and thoughts measures for the Black source were equivalent for weak and strong messages. These data are consistent with the argument that participants were processing messages presented by the Black source under low involvement.

Motivational Factors for Processing When Exposed to the Black Source

Up to this point, it has been shown that White participants are strongly motivated to process messages presented by a Black source, even when their motivation would be expected to be low. It is possible that this effect is the result of the mixed feelings and attitudes toward Blacks that have developed in recent times. In the past, Whites have been openly hostile and negative toward Blacks because of their race (e.g., Allport, 1954; Katz, 1970). However, because of the political and social reforms that have taken place in the United States, it is no longer fashionable to display prejudice openly. In the past decade, a class of theories has been proposed that outline how Whites’ attitudes toward minorities may have changed from mostly negative (composed of feelings of hatred and superiority) to mostly ambivalent attitudes, with both positive and negative components (e.g., Devine, 1989; Gaertner & Dovidio, 1986; Katz & Hass, 1988; Katz et al., 1986; McConahay, 1986) that can result in subtle displays of prejudice.

One such theory is aversive racism (Gaertner & Dovidio, 1986). Gaertner and Dovidio argued that most Whites hold egalitarian values and are quite concerned with maintaining their self-images as people who are fair and committed to racial equality. Because of this concern, they are strongly motivated to appear not to be racist. However, even though they may not be aware of it, they also hold negative racial attitudes, as a result of the historical and cultural atmosphere of racism that is prevalent in the United States. This ambivalence, which stems from having egalitarian values in conflict with unacknowledged negative feelings, may lead Whites to be highly sensitive in interracial situations, so as not to react in ways that appear racist. Still, they may act in subtle ways that reflect the influence of the negative attitude.

Application of this theory to the finding of low-involvement processing with the Black source suggests that White participants may have processed the message presented by the Black source because of their ambivalent attitudes toward Blacks. Participants may want to assure themselves, and others who may see their responses, that their reactions are fair and just. In most cases, under conditions of low involvement in the ELM, participants are not expected to pay attention to the message, but to be persuaded by other factors. However, in Experiments 2 and 3, participants may have felt that such a reaction toward the Black source would be viewed as racist because they were not giving the source his due.

This interpretation makes the argument that processing with the Black source under low involvement is motivated by the ambivalent attitudes, as described by Gaertner and Dovidio (1986), held toward Blacks. However, it is also possible that the message elaboration is the result of a different process: the expectations that the participants have about the source. Research on attribution has shown that people are more likely to engage in causal analyses when an unexpected event takes place (e.g., Clary & Tesser, 1983; Harvey, Yarkin, Lightner, & Town, 1980; Pyszczynski & Greenberg, 1981; Wong & Weiner, 1981). Pyszczynski and Greenberg (1981) argued, “When expected events occur, people may be interested or insufficiently motivated to go through the cognitive work necessary to form an attribution because they have pre-existing causal theories to explain such events. . . . People may be more likely to undertake new causal analyses when unexpected events occur because in such instances there are not clear pre-existing causal theories on which to rely” (p. 32).

In the current research, the participants may not have expected to read a report written by a Black student. This unexpected event may have resulted in message processing, as a result of heightened interest in the unexpected event. It is also possible that the participants did not expect the message to be pro-policy. In work similar in design to Experiment 2, Priester (1991) found that under low involvement, participants who were led to expect that a source would be against the senior comprehensive exam policy processed messages when the source turned out to be pro-policy, whereas participants who expected the source to be in favor of the policy did not process these messages. It is the case that Priester directly manipulated the participants’ expectations about the source, whereas in Experiment 2 no explicit attempt was made to shape the participants’ expectations. Nonetheless, it is possible that an unexpected position could lead to processing.

In a similar vein, Maheswaran and Chaiken (1991) suggested that “heuristic cues . . . can create expectations, and information that disconfirms these expectancies should be more extensively processed than expectancy-confirming information” (p. 15). According to Maheswaran and Chaiken, processing occurs because the unexpected information undermines the person’s confidence in making a judgment based on that heuristic, and
to restore confidence, additional information is needed (i.e., sufficiency principle). In Experiment 2, it is possible that, because of stereotypes and media reports on below-standard academic achievements of Blacks, participants may have had a particularly strong expectation that a Black source would be against the senior comprehensive exam policy. However, the message was pro-policy. Thus, the combination of source and position could have led to processing.

Experiment 5

In an effort to determine which, if any, of these possible explanations could account for the low-involvement processing stemming from exposure to the Black source, the ethnicity of the source was manipulated to test the effects of (a) attitudes toward the source, (b) violations of expectancies concerning the source's ethnicity, (c) violations of expectancies concerning the position taken by the source, and (d) the combination of ethnicity and position.

As a first step, two pretests were conducted. In one pretest, White participants \((n = 53) \) were asked to read short descriptions of different survey topics, which had supposedly been researched by fellow students. For each topic, one of which was the policy of senior comprehensive exams, they were asked to rate their expectations of seeing a student reporter of a given ethnicity (e.g., How likely is it that the student would be Black?) and their expectations about the source's position on the different issues given that ethnicity (e.g., if the student is Black, how likely is it that the student would favor this policy?) on a scale from 1 (not likely) to 11 (very likely).

As can be seen in Table 2, participants most expected to see a White student, followed by an Asian or Black student, then a Hispanic or Native American student. Among these last four groups, there were differences in participants' expectations. However, for the purposes of testing our hypotheses, the key factor is that these groups were less expected than the White student. Also, participants expected only the Asian student to be in favor of the senior exam policy, with no differences among the other sources.

In separate pretest, White participants \((n = 46) \) were asked to indicate their views toward different ethnic groups on a series of characteristics (i.e., good-bad, valuable-unvaluable, clean-dirty, favorable-unfavorable, and mature-immature) on semantic differential scales \((-4 \text{ to } +4; \text{ see Table 2})\). Participants viewed the White group most positively, followed by the Asian and Native American groups, and then the Black and Hispanic groups.

Collecting these pretest data allows us to assess one of the possible explanations for low-involvement processing with the Black source. If violation of expectancies concerning the position alone were the source of low-involvement processing, then exposure to the White source should lead to processing, because participants did not expect this source to be in favor of the policy, but did expect to see the source. This prediction has already been tested in our paradigm. In Experiments 2 and 3, under low involvement, participants were exposed to a White source, and did not engage in message processing. This would seem counter to Priester's (1991) findings, but as mentioned, his research directly manipulated the participants' expectations, whereas our paradigm incorporates a "natural," and perhaps weaker, manipulation of the expectancies. This difference may explain why we did not replicate the position violation finding of his work.

If violation of expectancies concerning the source's ethnicity alone were the motivation, then exposure to the Asian source should lead to processing, because participants did expect this source to be in favor of the policy, but did not expect to see the source. If the violation of both expectancies were required, then exposure to the Native American source should lead to processing, because participants did not expect this source to be in favor of the policy nor did they expect to see the source. On the other hand, if attitude toward the source is the determining factor, we would expect processing in response to the Hispanic source, because this source is from an ethnic group that was rated as unfavorably as Blacks (bottom row of Table 2).

Method

Participants and Design

Participants were 155 White male \((n = 66) \) and female \((n = 69) \) students who participated as a means of partially satisfying an introductory psychology course requirement. They were tested in groups ranging in size from 1 to 5 and were randomly assigned to 1 of the 10 conditions.

8 Maheswaran and Chaiken's (1991) work also suggested that the low-involvement processing could have resulted from a more specific type of expectancy violation. The stereotype of Blacks as unintelligent could have led participants to expect a Black source to come up with weak or flawed arguments instead of cogent, compelling arguments. If participants in Experiments 2 and 3 held such an expectation, then exposure to a strong message attributed to a Black source may have produced more message processing than the processing that resulted from exposure to the Black source-weak argument condition, in which argument cogency should have matched the participants' expectations. If this were the case, then one should find more message-relevant thoughts in the Black source-strong argument condition than in the Black source-weak argument condition. For Experiments 2 and 3, we computed a ratio of message-relevant thoughts to total thoughts for these two conditions for each study and found that they did not differ, \(p > .50 \). Although this may show that the specific expectancy violations between argument quality and source attributes found in Maheswaran and Chaiken do not account for the processing effect, the more general expectancy violations mentioned above may still do so.

9 As can be seen in Table 2, all scores on the second pretest are positive, even though the scores could have ranged from +20 to -20. However, this does not mean that groups were not viewed negatively. Gaertner and McLaughlin (1983) reported that White college students did not differentiate between Blacks and Whites on ratings of negative attributes (e.g., stupid) but did give Whites higher ratings than Blacks on positive attributes (e.g., ambitious). Gaertner and Dovidio (1986) argued that this finding is an example of how "prejudice is expressed indirectly and in a way that is not recognizably antiblack" (p. 84), because to endorse negative traits more for Blacks than for Whites could be "an act that would likely appear bigoted. Whites do, however, consistently ascribe more positive characteristics to Whites than to Blacks" (p. 85). Therefore, it is possible to find that whereas the overall ratings toward a group were on the positive side of a scale, there may still be a negative or "less favorable" component to the ratings given to that group.
was Black, the Hispanic source 100% of the time when the Asian, the Black source 100% of the time when the source correctly recalled 91.18% of the time when the source was actually Black, Hispanic, Native American, White actual source race) X 6 (Asian, Black, Hispanic, Native American, White, no source race recalled) chi-square was performed. The Asian source was 3.83, with no differences between the three sources and the Asian (M = 6.79) or Hispanic (M = 5.58) sources, ps > .20.

Dependent Variables

Attitude measures and thought listing. To test for processing on the attitude and thoughts measures, a priori orthogonal contrasts (Kirk, 1982) were conducted for each source that compared the participants' responses with the strong argument and weak argument messages.

The attitude score and positivity index scores were computed by the same method as in the previous experiments. For the attitude score, the mean intercorrelation for the semantic differential questions was .80 and the correlation for the two standardized attitude measures (semantic differential total and positivity index scores) was .86.

The results from the replication cells (i.e., Black and White sources) from Experiment 2 are reported first. For the attitude measure, participants who read a message presented by the Black source were affected by argument quality, F(1, 145) = 6.21, p = .01. As can be seen in Figure 3, Black source participants exposed to the strong argument message were more persuaded (M = .32) than those exposed to the weak argument.

Table 2

Measures of Expectancies About and Attitudes Toward the Ethnic Groups in Experiment 5

<table>
<thead>
<tr>
<th>Measure</th>
<th>Asian</th>
<th>Black</th>
<th>Hispanic</th>
<th>Native American</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest no. 1: Expectations about the source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expect source to be of this ethnicity</td>
<td>5.3a</td>
<td>5.6b</td>
<td>4.4cd</td>
<td>3.9d</td>
<td>8.0a</td>
</tr>
<tr>
<td>Pretest no. 2: Attitudes toward the ethnic groups</td>
<td>8.1b</td>
<td>4.5c</td>
<td>2.7c</td>
<td>8.1b</td>
<td>12.1b</td>
</tr>
</tbody>
</table>

Note. The two pretests were conducted separately. Means along each row without a common subscript are significantly different at p < .05 (Tukey HSD).

a Scale used for the expectancy measures was 1 to 11, with higher scores reflecting very expected. b Five scales (+4 to +4 each) were used and summed for attitude, with higher scores reflecting more positive attitude.

in the 2 (strong vs. weak argument quality) X 5 (Asian, Black, Hispanic, Native American, White source) between-subjects design.

Procedures

The same White male experimenter from Experiment 2, plus another White male experimenter, took turns conducting the sessions. The procedure from Experiment 2 was replicated except for the changes noted.

For all participants, the cover sheet contained the statement that "This policy has been under consideration and will be implemented at Oklahoma State University in the next academic year but is not under consideration at Northeastern" (low involvement only). In addition, race was listed as either Asian, Black, Hispanic, Native American, or White.

Next, the participants were given reports to read that consisted of the same strong and weak messages from Experiment 2. After reading the reports, participants filled out the questionnaire booklet from Experiment 3, without the questions that referred to the distraction manipulation (e.g., How distracting was it to count clicks while reading?).

Results

Preliminary analyses revealed no sex effects or experimenter effects, so these factors were eliminated from the analyses. The data were analyzed with 2 (strong vs. weak argument quality) X 5 (Asian, Black, Hispanic, Native American, White source) ANOVAs, unless otherwise noted.

Manipulation Checks

Personal involvement. The overall mean for involvement was 3.83, with no differences found between conditions, ps > .20.

Race of source. Participants were asked to recall the demographic characteristics of the student reporter. A 5 (Asian, Black, Hispanic, Native American, White actual source race) X 6 (Asian, Black, Hispanic, Native American, White, no source race recalled) chi-square was performed. The Asian source was correctly recalled 91.18% of the time when the source was actually Asian, the Black source 100% of the time when the source was Black, the Hispanic source 100% of the time when the source was Hispanic, the Native American source 90.0% of the time when the source was Native American, and the White source 96.67% of the time when the source was White, \(\chi^2(20, n = 155) = 598.90, p < .0001 \). Once again, participants did not misclassify the race of the reporter.

Argument quality. The question from Experiment 2 was used as the manipulation check for argument quality. A main effect was found for argument quality, F(1, 145) = 27.65, p < .0001. Participants rated the strong arguments as of better quality (M = 7.37) than the weak arguments (M = 5.20). Also, a main effect was found for race, F(4, 145) = 2.47, p = .05. Post-hoc tests (Tukey HSD; Kirk, 1982) revealed only that participants tended to rate the arguments presented by the White source (M = 6.83) and the Black source (M = 6.83) as of better quality than those presented by the Native American source (M = 5.37), ps < .10, with no differences between the three sources and the Asian (M = 6.79) or Hispanic (M = 5.58) sources, ps > .20.
Experiment 5: Standardized attitude scores of participants under low involvement with the five different ethnic sources (i.e., Asian, Black, Hispanic, Native American, White).

Figure 3. Experiment 5: Standardized attitude scores of participants under low involvement with the five different ethnic sources (i.e., Asian, Black, Hispanic, Native American, White).

Message (M = -.52). This was also true for the positivity index, F(1, 145) = 8.04, p = .005. Black source participants exposed to the strong argument message generated a higher positivity index (M = 1.33) than those exposed to the weak argument message (M = -1.53). So, as found in Experiments 2 and 3, these results are consistent with the notion that participants processed the messages presented by the Black source. On the other hand, participants who read a message presented by the White source were not affected by argument quality on the attitude measure or on the positivity index, ps > .20. The results for the White source replicate the findings in Experiments 2 and 3.

For the Asian source, there was no significant effect for argument quality on the attitude measure or on the positivity index, ps > .20. This finding suggests that violation of the expectancies about the source's ethnicity alone does not result in processing. Similarly, for participants who read a message presented by the Native American source, no argument quality effect was found on the attitude measure or on the positivity index, ps > .20. This result shows that the two expectancy violations in combination do not lead to low-involvement processing.

However, participants who read a message presented by the Hispanic source were affected by argument quality, F(1, 145) = 15.52, p = .0001. As can be seen in Figure 3, Hispanic source participants exposed to the strong argument message were more persuaded (M = .51) than those exposed to the weak argument message (M = -.78). This was also true for the positivity index, F(1, 145) = 19.82, p < .0001. Hispanic source participants exposed to the strong argument message generated a higher positivity index (M = 2.87) than those exposed to the weak argument message (M = -1.56). These results show that participants exposed to the Hispanic source were processing the messages.

In the overall 2 × 5 analyses of attitudes and thoughts, the interaction implied by this pattern of means approached significance for the attitude measure, F(4, 145) = 2.28, p = .06, and was reliable for the positivity index, F(4, 145) = 3.81, p = .006. In addition, main effects for argument quality were obtained on both the attitude scores, F(1, 145) = 14.61, p = .0002, and the positivity index, F(1, 145) = 13.17, p = .0004. Participants exposed to the strong arguments were more persuaded (M = .28) and generated a higher positivity index (M = 1.19) than participants exposed to the weak arguments (M = -.29 and M = -.40, respectively).

Argument recall. Because no specific predictions were made, a 2 (strong vs. weak argument quality) × 5 (Asian, Black, Hispanic, Native American, White source) ANOVA was used to analyze the results. The overall average number of arguments recalled was 2.80 out of a possible 4, and no differences were found among the conditions, ps > .20.

Ancillary measures. Because no specific predictions were made, 2 (strong vs. weak argument quality) × 5 (Asian, Black, Hispanic, Native American, White source) ANOVAs were used to analyze the results. The same efficacy (r = .80) and knowledge (mean r = .81) indices were computed, as in Experiment 2. Argument quality affected the participants’ perceptions on the efficacy and knowledge indices similarly. Participants exposed to the strong arguments indicated that the report was more effective (M = 7.91), F(1, 145) = 31.91, p < .0001, and that the source was more knowledgeable (M = 7.68), F(1, 145) = 15.74, p = .0001, than did those exposed to the weak arguments (M = 5.71 and M = 6.26, respectively). Analysis of the other ancillary measures did not reveal any significant differences.

Discussion

In Experiment 5, we tested various explanations for why, under low involvement, White participants processed the messages presented by a Black source. We found that expectancies concerning the source’s position, ethnicity, or both expectancies (i.e., White, Asian, and Native American sources) did not lead to processing. The current research did not replicate past research that suggests that expectancy violations can lead to message processing (e.g., Maheswaran & Chaiken, 1991; Priester, 1991). However, as previously mentioned, past work on expectancy effects has directly manipulated the participants’ expectancies about the source. This direct manipulation may have stronger impact on participants than the natural expectancies tested in the current research.

The new theories of prejudice that focus on subtle discrimination effects (e.g., aversive racism; Gaertner & Dovidio, 1986) suggest another source of motivation. Participants may be concerned with their appearance as nonracist individuals because of their egalitarian values, and thus, may not directly reject the Black source. From the pretest data, it was found that Blacks were rated less positively than Whites, Asians, or Native Americans by other White students. Similarly, Hispanics were rated less favorably than those groups. The results showed that processing only took place when the arguments were presented by these two sources. The finding for the Black and Hispanic

10 Maheswaran and Chaiken's (1991) specific incongruity effect was tested in Experiment 5 also (see Footnote 8). No differences in the ratios of message-relevant thoughts to total thoughts were found between the strong and weak argument conditions for the Black or the Hispanic sources, ps > .50.
sources gives credence to the possibility that ambivalent attitudes toward the source (i.e., the combination of egalitarian and negative attitudes), and not violation of expectancies, account for the processing under low involvement.

General Discussion

We investigated the effects of the race of source on persuasion using the paradigm suggested by the ELM (Petty & Cacioppo, 1986). According to this model, a variable can affect persuasion in three ways: as a peripheral cue (e.g., Petty et al., 1983); as a motivator of the amount of message elaboration, direction of message elaboration, or both (e.g., Burnkrant & Howard, 1984); or as a persuasive argument (e.g., Petty & Cacioppo, 1980). In Experiment 1, we tested the possibility that race of source (i.e., Black or White source) would affect White participants as a peripheral cue. The results showed that exposure to the source, with or without the advocated position, led to the same reactions for the Black and White sources. In addition, neither source led to more or less persuasion than an attitude-only control group that was given only the topic.

In Experiment 2, we investigated whether or not race of source was a motivator for processing. Participants were tested in a design in which personal relevance, argument quality, and race of source were manipulated. As predicted by the ELM, participants exposed to the White source were affected by message quality under high involvement, whereas message quality did not make a difference under low involvement. On the other hand, participants exposed to the Black source were affected by argument quality under both levels of involvement.

It appears that participants processed the messages presented by a Black source even under low involvement. If the messages are processed, past research (e.g., Petty et al., 1976) has shown that this processing can be disrupted by distraction. In Experiment 3, under low involvement, it was found that Black source participants were affected by argument quality under high distraction. Despite the fact that this level of distraction had been shown to disrupt high-involvement processing, it may not have been powerful enough to disrupt processing under low involvement when the report was attributed to a Black source. In Experiment 4, support was found for this explanation in that when the distractor was intensified, the argument quality effect was eliminated. This last finding suggests that not only were participants motivated by the presence of a Black source to process the message in Experiment 3, they were so motivated that they were able to overcome a high level of distraction to do so.

In the final experiment, some possible explanations for low-involvement processing with the Black source were tested. Experiment 5 showed that source expectancy violations (i.e., source's position, ethnicity, or both expectancies) do not appear to be the explanation for the processing in this paradigm. Another explanation proposed that low-involvement processing with the Black source is an example of how subtle forms of prejudice may be manifested in our society, as suggested by modern theories of prejudice (e.g., Gaertner & Dovidio, 1986). In Experiment 5, processing was found only with a source from an ethnic group that was rated as unfavorably as Blacks. This result gives credence to the possibility that low-involvement process-
tions may have led them to reaffirm their egalitarian values by shifting their attitudes toward the positive end of the scale, which led to the more favorable attitudes found under high distraction than under low distraction and forestalled the possibility that their behavior could be interpreted as racist.

If an effect stems from the attitudes held toward an ethnic group, one may expect the participants' prejudice level to moderate the finding, such that people who are more prejudiced would react more negatively toward the Black source than those who report less prejudiced attitudes. However, in our research, measured prejudice level has not affected the processing result. In Experiment 2, in which we used our ethnic scale, and in a pilot study, in which we used the Modern Racism Scale (McConahay, 1986), we found that both high-prejudice and low-prejudice participants processed the messages presented by the Black source under low involvement. Likewise, Gaertner and Dovidio and their colleagues (e.g., Dovidio & Gaertner, 1981; Gaertner & Dovidio, 1977; Gaertner et al., 1982) reported that the racial discrimination found in their studies was not affected by participants' prejudice level. They argued that because the social atmosphere on college campuses promotes learning and tolerance, students are more apt to fall into the classification of aversive racists than "old-fashioned" or dominant racists. Despite the fact that one may find differences between groups on a prejudice measure, "even the highest prejudice-scoring students on a university campus are usually not dominant racists" (Gaertner & Dovidio, 1986, pp. 67–68). So, it is possible that our samples have not contained enough dominant racists to have an impact on our effect.

We would argue that if a sample of dominant racists were exposed to these manipulations, it is likely that they would respond to the Black source as a simple negative cue. We argue that processing results from exposure to sources who are members of social groups toward which most people experience the ambivalence of a negative bias in conflict with the desire to be egalitarian. Dominative racists are not likely to experience any such conflict. The absence of this conflict may also account for the findings of studies in which participants' attitudes toward a particular source have been manipulated (e.g., Chaiken, 1980; Petty et al., 1983). In these studies in which participants are led to favor one source over another, no low-involvement processing has been found, only a simple cue effect (i.e., more persuasion with a favorable source than a less favorable source, regardless of the message). In these studies, once again, there is no ambivalence, only less favorable attitudes toward the source (see also Huddleston, 1985, cited in Petty & Cacioppo, 1986).

Finally, we have not dealt with the third way in which Petty and Cacioppo (1986) postulated that source characteristics may affect persuasion: as a persuasive argument. That is, under conditions of high elaboration, source characteristics may be taken into account to validate the merits of the communication. For example, Petty and Cacioppo (1980) found that a source's attractiveness affected persuasion when the messages, which dealt with the endorsement of a shampoo, were processed. They reasoned that participants took the appearance of the spokesperson as a visual testimony to the shampoo's effectiveness, in conjunction with the statements made in the message. In our work, the topic of senior exams did not lend itself to a test for this potential effect of race of source. We wanted to see the effects of race of source on a more "generic" topic that has been used extensively in the field (e.g., Burnkrant & Howard, 1984; Leippe & Elkin, 1987; Petty & Cacioppo, 1979, 1984; Petty, Cacioppo, & Goldman, 1981; Petty, Cacioppo, & Hesseacker, 1981). If the topic were more "racial" in nature (e.g., affirmative action), participants may be more likely to use the race of the source as an additional argument.

In this research, we sought to fill in a lacuna in the persuasion literature, the effect of race of source on persuasion, using a model, the ELM (Petty & Cacioppo, 1981, 1986), that makes specific predictions concerning the effects of such variables. We have found evidence consistent with the argument that White participants do not react to Black sources as simple cues. Instead, participants appear highly motivated to process the messages of these sources. Additional research is needed to examine the limits of low-involvement processing with the Black and Hispanic sources and to extend these findings. However, it appears that through this research we may learn not only more about the persuasion process, but also more about the subtle influences of prejudice and racism in our culture.

References

Received August 20, 1992
Revision received February 28, 1994
Accepted March 1, 1994

New Editors Appointed, 1996–2001

The Publications and Communications Board of the American Psychological Association announces the appointment of two new editors for 6-year terms beginning in 1996. As of January 1, 1995, manuscripts should be directed as follows:

- For *Behavioral Neuroscience*, submit manuscripts to Michela Gallagher, PhD, Department of Psychology, Davie Hall, CB# 3270, University of North Carolina, Chapel Hill, NC 27599.

- For the *Journal of Experimental Psychology: General*, submit manuscripts to Nora S. Newcombe, PhD, Department of Psychology, Temple University, 565 Weiss Hall, Philadelphia, PA 19122.

Manuscript submission patterns make the precise date of completion of 1995 volumes uncertain. The current editors, Larry R. Squire, PhD, and Earl Hunt, PhD, respectively, will receive and consider manuscripts until December 31, 1994. Should either volume be completed before that date, manuscripts will be redirected to the new editors for consideration in 1996 volumes.